НАУЧНО-ТЕХНИЧЕСКИЙ ЖУРНАЛ

"ВОПРОСЫ МАТЕРИАЛОВЕДЕНИЯ"

№ 3(79), 2014

СОДЕРЖАНИЕ

МЕТАЛЛОВЕДЕНИЕ. МЕТАЛЛУРГИЯ
Горынин В. И., Оленин М. И. Повышение хладостойкости низколегированных термоулучшаемых сталей за счет коагуляции карбидных фаз
ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ
Большакова А. Н., Ефимочкин И. Ю., Мурашева В. В. Металлографические исследования высокотемпературных композиционных материалов на основе сплавов Мо—Si—B
ПОЛИМЕРНЫЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
Орыщенко А. С., Анисимов А. В., Бахарева В. Е., Саргсян А. С., Чурикова А. А. Создание высокопрочных водостойких диэлектриков и разработка технологии изготовления изделий радиотехнического назначения и судовой электроизоляции
водомассопереноса в высоконаполненных полимерных конструкционных композитах (сферо-, стекло-, углепластики)122
Хасков М. А. Сравнительное определение температур стеклования полимерных композиционных материалов методами ДСК, ТМА и ДМА
СВАРКА И РОДСТВЕННЫЕ ПРОЦЕССЫ. СВАРОЧНЫЕ МАТЕРИАЛЫ И ТЕХНОЛОГИИ
Найдёнкин Е. В., Иванов К. В., Колубаев Е. А. <i>Изменение фазового состава сплава АМг5 при сварке трением с перемешиванием</i>

РАДИАЦИОННОЕ МАТЕРИАЛОВЕДЕНИЕ

Строжук А. В., Жителев В. А., Звир Е. А., Поленок В. С. Изменение геометрических параметров
твэлов ВВЭР с повышенной загрузкой урана при эксплуатации
Оленин М. И., Горынин В. И., Тимофеев Б. Т., Павлов В. Н., Рогожкин В. В. Природа тепловой
хрупкости сталей оборудования АЭС и методы ее снижения167
ХРОНИКА
13-я международная конференция «Проблемы материаловедения при проектировании, изготовлении и эксплуатации оборудования АЭС»174
Рефераты публикуемых статей179
Авторский указатель
Научно-технический журнал «Вопросы материаловедения». Оформление статей.

РЕФЕРАТЫ ПУБЛИКУЕМЫХ СТАТЕЙ

УДК 669.14.018.41:621.785

Повышение хладостойкости низколегированных термоулучшаемых сталей за счет коагуляции карбидных фаз. Горынин В. И., Оленин М. И. – Вопросы материаловедения, 2014, № 3(79), с. 5–14.

Исследовано влияние коагуляции карбидных фаз при старении после термического улучшения и термомеханической обработки на хладостойкость листов и поковок из стали 09Г2СА-А и труб из сталей X80 и X90, включая зону термического влияния после сварки. Показано, что коагуляция карбидных фаз обеспечивает подавление хрупкости низколегированных термоулучшаемых сталей.

Ключевые слова: низколегированные термоулучшаемые стали, коагуляция карбидных фаз, хладостойкость,

УДК 620.179.17

Влияние термоциклирования стали Ст3кп на энергетические параметры акустической эмиссии. Лебедев Е. Л., Храмков А. А. – Вопросы материаловедения, 2014, № 3(79), с. 15–21.

Представлены результаты экспериментальных исследований по определению зависимости характеристик сигналов акустической эмиссии от изменения свойств стали СтЗКП в условиях термомеханических воздействий.

Ключевые слова: неразрушающий контроль, термомеханическая нагрузка, деградация механических свойств, акустическая эмиссия, ресурс.

УДК 669.15-194:621.039.536.2

Опыт изготовления заготовки фланца крышки корпуса реактора ВВЭР-ТОИ из стали марки 15Х2МФА-А мод. А на ПАО «ЭНЕРГОМАШСПЕЦСТАЛЬ» (Украина). Зотова А. О., Теплухина И. В., Цветков А. С., Зайцева О. Ю. – Вопросы материаловедения, 2014, № 3(79), с. 22–33.

Произведен сравнительный анализ прокаливаемости стали марок 15Х2МФА-А мод. А и 15Х2НМФА кл. 1. Проанализирован опыт изготовления крупногабаритной заготовки фланца крышки корпуса реактора с толщиной стенки 660 мм из стали 15Х2МФА-А мод. А. Показана возможность получения металла с механическими свойствами в термоинерционной зоне сечения данной заготовки, соответствующими категории прочности КП45 с критической температурой хрупкости не выше минус 50°С.

Ключевые слова: сталь 15Х2МФА-А мод. А, прокаливаемость, фланец крышки корпуса реактора ВВЭР-ТОИ, опыт изготовления.

УДК 669.14.018.44:539.377

Влияние фазового состава на деформационную способность стали марки 07Х12НМФБ при высоких температурах. Кудрявцев А. С., Артемьева Д. А., Рейнер П. Я. – Вопросы материаловедения, 2014, № 3(79), с. 34–40.

С целью определения оптимального температурного режима горячей пластической деформации исследовано влияние химического состава стали марки 07X12HMФБ на ее деформационную способность при высоких температурах.

Ключевые слова: жаропрочная коррозионно-стойкая сталь, горячая пластическая деформация, деформационная способность.

УДК 669.28: 621.762

Металлографические исследования высокотемпературных композиционных материалов на основе сплавов Мо–Si–B. Большакова А. Н., Ефимочкин И. Ю., Мурашева В. В. – Вопросы материаловедения, 2014, № 3(79), с. 41–46.

Методом механического легирования из элементарных порошков был получен высокотемпературный in-situ композиционный материал на основе системы Mo—Si—B, обладающий высокой стойкостью к окислению под воздействием высоких температур. Для полученных композиционных материалов исследована микроструктура и проведены испытания на окалиностойкость.

Ключевые слова: композиционные материалы на основе системы Mo–Si–B, механическое легирование, порошковая металлургия, металлографические исследования, окалиностойкость.

УДК 621.793.6

Изготовление металлокомпозиционных защитных покрытий способом термодиффузии в переменном электромагнитном поле. Кубанцев В. И., Фармаковский Б. В., Рязанов Е. М., Савицкий Д. С., Трачевский М. Л. – Вопросы материаловедения, 2014, № 3(79), с. 47–59.

Рассмотрены закономерности и особенности формирования металлокомпозиционных покрытий металлоизделий способом термодиффузии в переменном электромагнитном поле. Методами электронной микроскопии и рентгенофазового анализа выполнено исследование микроструктуры покрытий. Показано, что исследуемые покрытия представляют собой многослойную систему, в которой каждый слой является металлокомпозитом. Описаны примеры практической реализации.

Ключевые слова: металлокомпозит, защитное покрытие, термодиффузия, электромагнитное поле, интерметаллид, микроструктура, индукционная установка.

УДК 621.763:537.311

Об увеличении фактической площади скользящего контакта металлических графитсодержащих композитов под влиянием электрического тока и расплава Pb—Sn в контактном пространстве. Фадин В. В., Алеутдинова М. И. — Вопросы материаловедения, 2014, № 3(79), с. 60—65.

Исследовано влияние расплава Pb—Sn в контактном пространстве на токопроводящую площадь и электропроводность контакта. Проведена полуэмпирическая оценка электропроводности токопроводящего контакта, содержащего расплав Pb—Sn в контактном пространстве.

Ключевые слова: металлические графитсодержащие композиты, электропроводность токопроводящего контакта, расплав Pb–Sn, пара трения.

УДК 621.794.44: 621.822.175

Формирование профилированных функциональных элементов на прецизионных поверхностях узлов гироскопических приборов методом ионного травления. Беляев С. Н., Щербак А. Г. – Вопросы материаловедения, 2014, № 3(79), с. 66–72.

Рассматривается технология формирования аэродинамического профиля на сферических поверхностях деталей газового подшипника поплавкового гироскопа методом ионного травления. Приведено описание ориентации деталей для формирования профиля переменной глубины, исследовано влияние структурно-фазового состояния сплава 40ХНЮ-ВИ на качество и точность формируемого профиля и предложены технические решения по согласованию режимов термообработки и технологии ионного травления. Представлены практические результаты исследований.

Ключевые слова: ионное травление, аэродинамический профиль, опора, гиромотор, двухстепенной поплавковый гироскоп.

УДК 669.245:621.315.3

Разработка тензо- и терморезистивных сплавов для литья микропроводов. Масайло Д. В., Смелов А. И., Песков Т. В., Фармаковский Б. В. – Вопросы материаловедения, 2014, № 3(79), с. 73–78.

Обоснованы перспективы использования литых микропроводов в стеклянной изоляции для создания миниатюрных чувствительных сенсоров. С учетом специфических особенностей литья микропроводов экспериментально разработаны термо- и тензорезистивные сплавы с существенно

новым комплексом электрофизических свойств. Оптимизированы конкретные составы терморезистивных сплавов на основе систем Ni–Sn и Ni–Cr.

Ключевые слова: термо- и тензорезистивные сплавы, литые микропровода, стеклянная изоляция, новый комплекс электрофизических свойств.

УДК 621.793.7-419

Многослойные износостойкие и коррозионно-стойкие наноструктурированные функционально-градиентные покрытия, полученные методом магнетронного напыления. Фармаковская А. Я., Бобкова Т. И., Ешмеметьева Е. Н. – Вопросы материаловедения, 2014, № 3(79), с. 79–89.

Разработана новая технологическая схема нанесения многослойных металломатричных функционально-градиентных покрытий с периодически повторяющимися слоями. Выбор и оптимизация технологических режимов получения покрытий производились на установках типа «Булат» и «Магна-ТМ5».

Ключевые слова: наноструктурированные металломатричные функционально-градиентные покрытия; метод магнетронного напыления, износостойкость, коррозионная стойкость.

УДК 621.793.7:628.16

Магнетронное напыление функционально-градиентных покрытий системы Ti-Ru-O для систем очистки воды. Ешмеметьева Е. Н., Быстров Р. Ю., Беляков А. Н., Фармаковский Б. В., Васильев А. Ф., Красиков А. В. – Вопросы материаловедения, 2014, № 3(79), с. 90–96.

Показана возможность получения методом реактивного вакуумного магнетронного напыления каталитически активных покрытий на основе оксидов титана и рутения с высокой адгезией к титановой подложке. Проведен сравнительный анализ характеристик покрытий, полученных термическим разложением солей титана, рутения и иридия и методом магнетронного напыления при одновременном распылении титана и рутения в среде кислорода.

Ключевые слова: функционально-градиентные покрытия, реактивное вакуумное магнетронное напыление, системы очистки воды.

УДК 678.067.5:621.315.61:621.396.6

Создание высокопрочных водостойких диэлектриков и разработка технологии изготовления изделий радиотехнического назначения и судовой электроизоляции. Орыщенко А. С., Анисимов А. В., Бахарева В. Е., Саргсян А. С., Чурикова А. А. – Вопросы материаловедения, 2014, № 3(79), с. 97–108.

Приведены результаты исследования физико-механических и диэлектрических характеристик разработанных ФГУП ЦНИИ КМ «Прометей» эпоксидных стеклопластиков горячего прессования марок СТЭТ-1 и СТЭТ-2 при различных температурах в исходном состоянии и после экспозиции в воде, в том числе под действием гидростатического давления. Обобщен опыт применения изделий радиотехнического назначения в течение длительных сроков эксплуатации (до 15 лет).

Ключевые слова: эпоксидные стеклопластики горячего прессования, физико-механические и диэлектрические характеристики, радиотехника, судовая электроизоляция.

УДК 678.067:544.723

Анализ связи водостойкости образцов и блоков конструкционных полимерных материалов (сферопластиков) с отношением площади их поверхности к объему. Седлецкий Р. В., Николаев Г. И. – Вопросы материаловедения, 2014, № 3(79), с. 109–121.

Исследована экспериментально в ходе гидроиспытаний и теоретически в рамках физикохимической менисковой модели реверсивного водомассопереноса под давлением связь водостойкости образцов (блоков) с отношением полной площади их поверхности к объему в высоконаполненных конструкционных полимерных композитах. Установлен нефиковский волнообразный характер этой связи, обусловленный наличием в таких композитах макромолекулярных дефектов в структуре их трехмерной сетки, а также обширных границ раздела полимер – наполнитель с их гидролизуемыми в процессе водопоглощения аппретными связями. Показано, что именно эти факторы приводят к существенному усилению влияния процессов активированной адсорбции на разноэнергетических активных центрах с противофазным воздействием на полярность трехфазной границы раздела вода — полимер, регулирующей уровень водопоглощения.

Ключевые слова: сферопластик, мениск жидкости, реверсивный водомассоперенос, плавучесть, прочность, аппрет, границы раздела, стеклянные микросферы, гидростатическкое давление.

УДК 678.067:544.723

Анализ и экспериментальное обоснование реверсивной кинетики водомассопереноса в высоконаполненных полимерных конструкционных композитах (сферо-, стекло-, углепластиках). Седлецкий Р. В. – Вопросы материаловедения, 2014, № 3(79), с. 122–137.

В целях корректной оценки правильности интерпретации экспериментальных данных по исследованию кинетики процесса водопоглощения в высоконаполненных полимерных композитах была создана комплексная установка для непрерывного гидростатического взвешивания образцов в течение сотен часов с одновременной регистрацией кинетических кривых водопоглощение – время и температура рабочей жидкости – время. При этом с той же целью был выполнен термодинамический расчет тепловых эффектов – положительных при самопроизвольной адсорбции молекул воды на молекулярных дефектах структуры и отрицательных при диссоциации аппретных связей на границах раздела полимер – аппрет – наполнитель в ходе автокаталитического гидролиза.

При сопоставлении этих расчетов с данными, полученными в экспериментах на установке для непрерывной регистрации кинетических функций водопоглощения, было установлено точное их соответствие с выводами и принципами менисковой модели реверсивного водомассопереноса в полимерных композитах.

Ключевые слова: сферопластики, стеклопластики, углепластики, кинетика водомассопереноса (водопоглощение), гидростатическое давление, композит, молекулярная структура, реверсивность.

УДК 678.067:539.213:620.181.4

Сравнительное определение температур стеклования полимерных композиционных материалов методами ДСК, ТМА и ДМА. Хасков М.А. – Вопросы материаловедения, 2014, № 3(79), с. 138–144.

Проведены измерения температур стеклования $T_{\rm c}$ отвержденного связующего и композитов на его основе с использованием дифференциальной сканирующей калориметрии (ДСК), термомеханического анализа (ТМА) и динамического механического анализа (ДМА). Показано, что на величины $T_{\rm c}$, полученные методом ДСК может влиять рекомендуемая скорость охлаждения перед измерением, и данное влияние наиболее заметно для кинетически менее фрагильных образцов. Величины $T_{\rm c}$, рассчитанные из начала падения динамического модуля упругости или из максимума модуля потерь выше для композитов по сравнению с отливкой отвержденного связующего. Наименее зависимыми от наполнителя величинами $T_{\rm c}$, возможно, являются величины, полученные с помощью методов ТМА и ДМА при использовании в расчетах максимума тангенса потерь.

Ключевые слова: дифференциальная сканирующая калориметрия, динамический механический анализ, температура стеклования, сравнение методов, полимерные композиционные материалы.

УДК 678.067:544.723

Анализ связи водостойкости образцов и блоков конструкционных полимерных материалов (сферопластиков) с отношением площади их поверхности к объему. Седлецкий Р. В., Николаев Г. И. – Вопросы материаловедения, 2014, № 3(79), с. 109–121.

Исследована экспериментально в ходе гидроиспытаний и теоретически в рамках физикохимической менисковой модели реверсивного водомассопереноса под давлением связь водостойкости образцов (блоков) с отношением полной площади их поверхности к объему в высоконаполненных конструкционных полимерных композитах. Установлен нефиковский волнообразный характер этой связи, обусловленный наличием в таких композитах макромолекулярных дефектов в структуре их трехмерной сетки, а также обширных границ раздела полимер – наполнитель с их гидролизуемыми в процессе водопоглощения аппретными связями.

Показано, что именно эти факторы приводят к существенному усилению влияния процессов активированной адсорбции на разноэнергетических активных центрах с противофазным воздействием на полярность трехфазной границы раздела вода — полимер, регулирующей уровень водопоглощения.

Ключевые слова: сферопластик, мениск жидкости, реверсивный водомассоперенос, плавучесть, прочность, аппрет, границы раздела, стеклянные микросферы, гидростатическкое давление.

УДК 678.067:544.723

Анализ и экспериментальное обоснование реверсивной кинетики водомассопереноса в высоконаполненных полимерных конструкционных композитах (сферо-, стекло-, углепластиках). Седлецкий Р. В. – Вопросы материаловедения, 2014, № 3(79), с. 122–137.

В целях корректной оценки правильности интерпретации экспериментальных данных по исследованию кинетики процесса водопоглощения в высоконаполненных полимерных композитах была создана комплексная установка для непрерывного гидростатического взвешивания образцов в течение сотен часов с одновременной регистрацией кинетических кривых водопоглощение – время и температура рабочей жидкости – время. При этом с той же целью был выполнен термодинамический расчет тепловых эффектов – положительных при самопроизвольной адсорбции молекул воды на молекулярных дефектах структуры и отрицательных при диссоциации аппретных связей на границах раздела полимер – аппрет – наполнитель в ходе автокаталитического гидролиза.

При сопоставлении этих расчетов с данными, полученными в экспериментах на установке для непрерывной регистрации кинетических функций водопоглощения, было установлено точное их соответствие с выводами и принципами менисковой модели реверсивного водомассопереноса в полимерных композитах.

Ключевые слова: сферопластики, стеклопластики, углепластики, кинетика водомассопереноса (водопоглощение), гидростатическое давление, композит, молекулярная структура, реверсивность.

УДК 678.067:539.213:620.181.4

Сравнительное определение температур стеклования полимерных композиционных материалов методами ДСК, ТМА и ДМА. Хасков М.А. – Вопросы материаловедения, 2014, № 3(79), с. 138–144.

Проведены измерения температур стеклования $T_{\rm c}$ отвержденного связующего и композитов на его основе с использованием дифференциальной сканирующей калориметрии (ДСК), термомеханического анализа (ТМА) и динамического механического анализа (ДМА). Показано, что на величины $T_{\rm c}$, полученные методом ДСК может влиять рекомендуемая скорость охлаждения перед измерением, и данное влияние наиболее заметно для кинетически менее фрагильных образцов. Величины $T_{\rm c}$, рассчитанные из начала падения динамического модуля упругости или из максимума модуля потерь выше для композитов по сравнению с отливкой отвержденного связующего. Наименее зависимыми от наполнителя величинами $T_{\rm c}$, возможно, являются величины, полученные с помощью методов ТМА и ДМА при использовании в расчетах максимума тангенса потерь.

Ключевые слова: дифференциальная сканирующая калориметрия, динамический механический анализ, термический механический анализ, температура стеклования, сравнение методов, полимерные композиционные материалы.

УДК 678.742.2:539.2

Структурные изменения сверхвысокомолекулярного полиэтилена под воздействием керамических нанодисперсий. Охлопкова Т. А., Охлопкова А. А., Спиридонов А. М., Никифоров Л. А. – Вопросы материаловедения, 2014, № 3(79), с. 145–153.

Исследована надмолекулярная структура полимерматричных нанокомпозитов на основе сверхвысокомолекулярного полиэтилена, модифицированного неорганическими наноразмерными

оксидами (Al_2O_3 + 0,5% MgO, SiO₂) методами рентгеноструктурного анализа при малоугловом и широкоугловом рассеянии рентгеновского излучения. Показано влияние наночастиц на процессы кристаллизации сверхвысокомолекулярного полиэтилена. Сочетание этих методов с исследованиями на просвечивающем и сканирующем электронном микроскопе позволило сформулировать и детализировать характеристику упорядоченной фазы в полимерном нанокомпозите.

Ключевые слова: сверхвысокомолекулярный полиэтилен, оксиды алюминия и кремния, алюмаг, таркосил, полимерный композиционный материал, надмолекулярная структура.

УДК 669.715:621.791.14

Изменение фазового состава сплава АМг5 при сварке трением с перемешиванием. Найдёнкин Е. В., Иванов К. В., Колубаев Е. А. – Вопросы материаловедения, 2014, № 3(79), с. 154—159.

Методами рентгеноструктурного анализа и растровой электронной микроскопии исследовано изменение фазового анализа сплава АМГ5 в зоне термического воздействия при сварке методом трения с перемешиванием. Путем измерения параметра решетки обнаружено растворение частиц вторичных фаз в матрице. Установлено, что в зоне термического воздействия имеет место разрушение текстуры прокатки. Методом микрорентгеноспектрального анализа измерен химический состав частиц вторичных фаз, присутствующих в матрице.

Ключевые слова: сварка трением с перемешиванием, сплав АМг5, рентгеноструктурный анализ, растровая электронная микроскопия.

УДК 621.039.54

Изменение геометрических параметров твэлов ВВЭР с повышенной загрузкой урана при эксплуатации. Строжук А. В., Жителев В. А., Звир Е. А., Поленок В. С. – Вопросы материаловедения, 2014, № 3(79), с. 160–166.

Представлены данные по изменению геометрических параметров твэлов с повышенной загрузкой урана ВВЭР-1000 (ТВСА-5М, ТВС-2М) и РК ВВЭР-440 второго поколения при эксплуатации. Показано, что наступление контакта между топливным сердечником и оболочкой и последующее увеличение диаметра твэлов происходит при меньших выгораниях топлива по сравнению с твэлами базовой конструкции. Существенных отличий в удлинении не выявлено.

Ключевые слова: твэлы BBЭР с повышенной загрузкой урана, твэл базовой конструкции, механизмы формоизменения, изменение геометрических параметров.

УДК 669.15-194: 539.422.22

Природа тепловой хрупкости сталей оборудования АЭС и методы ее снижения. Оленин М. И., Горынин В. И., Тимофеев Б. Т., Павлов В. Н., Рогожкин В. В. – Вопросы материаловедения, 2014, № 3(79), с. 167–173.

Изучено влияние температурно-временных параметров старения феррита на сопротивление хрупкому разрушению стали марки 10ГН2МФА, широко используемой в атомной промышленности, после длительной выдержки в течение 60000 ч в диапазоне температур 270–310°С. Показано, что перестаривание ферритной фазы, приводящей к коагуляции цементита, позволяет уменьшить тепловое охрупчивание стали и повысить сопротивление ее хрупкому разрушению.

Ключевые слова: сталь 10ГН2МФА, тепловая хрупкость, температурно-временные параметры старения, сопротивление хрупкому разрушению.