CONTENTS

METALS SCIENCE. METALLURGY
Korotovskaya S.V., Sych O.V., Khlushova E.I., Novoskoltsev N.S. Microalloying effects on structure-forming processes during hot plastic deformation .. 5
Sych O.V., Khlushova E.I. Correlation of structure parameters and performance characteristics of alloy steels for shipbuilding .. 17
Raevskikh A.N. Digital technologies in detecting inhomogeneous concentration zones in heat-resistant nickel alloys structure, including those obtained by selective laser melting 32
Khodinev I.A., Monin S.A., Ryzhkov P.V. Investigation of the fatigue crack growth rate in heat-resistant nickel alloys .. 48
Schastlivaya I.A., Leonov V.P., Tretyakov I.V., Askinazi A.Yu. Influence of the composition of α-titaniu alloys on thermal conductivity .. 79

FUNCTIONAL MATERIALS
Vasilieva O.V., Gyulikhandanov E.L., Farmakovskiy B.V., Khromenkov M.V. Casting glass coated microwires of alloys based on silver and nickel .. 87
Sharin P.P., Akimova M.P., Yakovleva S.P., Popov V.I. Structure and microhardness of binding for diamond tools based on tungsten carbide obtained by impregnation of iron-carbon melt 95
Bystrov R.Yu., Belyakov A.N., Vasiliev A.F., Prudnikov I.S., Farmakovskiy B.V. Alloy based on the Al–Mg system for developing a target for magnetron thin films sputtering ... 109
Vasiliev A.F., Gyulikhandanov E.L., Samodelkin E.A., Farmakovskiy B.V. Development of an alloy in the tellurium – copper – cerium system for manufacturing functional coatings for photocathodes of photoelectronic devices ... 113
Vasilieva O.V., Farmakovskiy B.V., Khromenkov M.V. Developing glass composition for glass coated In and Sn cast microwires .. 117
Yakovleva N.V., Farmakovskiy B.V., Makarov A.M. Study of phase transformations in the synthesis of catalytic coatings on metal carrier .. 121
Leonov A.A., Abdulmenova E.V., Kalashnikov M.P., Jing Li. Effect of Al2O3 nanofibers on compaction, phase composition, and mechanical properties of ZrO2-based composites obtained by vacuum pressureless sintering .. 132

POLYMER COMPOSITE MATERIALS
Zhelezina G.F., Solovieva N.A., Shuldestova P.M., Kan A.Ch. Influence of climatic factors on the properties of ballistically resistant organoplastics .. 144
Lishevich I.V., Anisimov A.V., Savelov A.S., Sargsyan A.S., Sobolev M.Yu. Influence of the initial roughness of the antifriction carbons surface on tribotechnical characteristics and running-in coating efficiency .. 158

CORROSION AND PROTECTION OF METALS
Tyurina S.A., Chavushyan S.L., Makarova A.V., Khvostov R.E., Yudin G.A. Research and analysis of methods for preventing silver alloys from tarnishing .. 170

STRUCTURAL INTEGRITY AND SERVICEABILITY OF MATERIALS
Sadkin K.E., Filin V.Yu., Mizetsky A.V., Nazarova E.D. FEM assessment of the local side compression technique efficiency as applicable for notched prismatic specimens .. 182

RADIATION MATERIALS SCIENCE
Study of nozzles' metal of VVER-440 pressure vessel after 45 years of exploitation 192

A list of articles published in the scientific and technical journal “Voprosy Materialovedeniya”
in 2020 ... 200

Guidelines for authors of the scientific and technical journal “Voprosy Materialovedeniya”.
Manuscript requirements .. 204
MICROALLOYING EFFECTS ON STRUCTURE-FORMING PROCESSES DURING HOT PLASTIC DEFORMATION

S.V. KOROTOVSKAYA, Cand Sc. (Eng), O.V. SYCH, Cand Sc. (Eng), E.I. KHLUSOVA, Dr Sc. (Eng),
N.S. NOVOSKOLTSEV

NRC “Kurchatov Institute” – CRISM “Prometey”, 49 Shpalernaya St, 191015 St Petersburg,
Russian Federation. E-mail: mail@crism.ru

Received November 25, 2020
Revised December 2, 2020
Accepted December 9, 2020

Abstract—The kinetics of austenite grains’ growth upon heating has been investigated, and the processes of dynamic and static recrystallization occurring under different modes of plastic deformation (reduction pattern, deformation temperature) of high-strength steels with various microalloying complexes have been studied. The research made it possible to reveal the thermal deformation conditions for the formation of a finely dispersed homogeneous structure of steel. Technological recommendations have been developed for the production of high-strength steels depending on their microalloying (vanadium, niobium).

Keywords: high-strength steel, vacuum etching, austenite grain, static recrystallization, dynamic recrystallization, hot rolling, bainite-martensite structure, Gleeble 3800

DOI: 10.22349/1994-6716-2020-104-4-05-16

REFERENCES

UDC 669.14.018.41: 669.15–194.2: 621.771.23: 539.4

CORRELATION OF STRUCTURE PARAMETERS AND PERFORMANCE CHARACTERISTICS OF ALLOY STEELS FOR SHIPBUILDING

O.V. SYCH, Cand Sc. (Eng), E.I. KHLUSOVA, Dr Sc. (Eng)

NRC “Kurchatov Institute” – CRISM “Prometey”, 49 Shpalernaya St, 191015 St Petersburg, Russian Federation. E-mail: mail@crism.ru

Received December 4, 2020
Revised December 15, 2020
Accepted December 17, 2020

Abstract—The article presents the results of a study of the relationship between strength and performance (temperatures of ductile-brittle transition T_{db} and zero plasticity NDT, critical opening at the crack tip CTOD at a test temperature of $–40^\circ C$) on the structure parameters of thick plate products made of low-carbon low-alloy steels with different contents of basic alloying and microalloying elements.

Keywords: low-alloy steel, thermomechanical treatment, carbon equivalent, strength, cold resistance, crack resistance, structure parameters

DOI: 10.22349/1994-6716-2020-104-4-17-31

REFERENCES

5. Tazov, M.F., Tsvertkov, D.S., Goroshko, T.V., Issledovanie neodnorodnosti mekanicheskikh svoistv i mikrostruktury po tolshchiny stali kategorii prochnosti K65, izgotovlennogo sposobom termomekhanicheskoy obrabotki [Study of the inhomogeneity of mechanical properties and microstructure across the thickness of a sheet of K65 strength category, manufactured by thermomechanical processing], Problemy chernoy metallurgii i materialovedeniya, 2013, No 2, pp. 72–77.

7. Goli-Oglu, E.A., Kichkina, A.A., Mikro- i nanostrukturnaya neravnomernost po tolshchine 100 mm plit iz konstruktsionnoy stali posle TMO i TO [Micro and nanostructural unevenness in thickness of 100 mm of structural steel plates after TMT and TO], Metallurg, 2016, No 11, pp. 54–60.

UDC 669.245.018.44: 621.762.5

DIGITAL TECHNOLOGIES IN DETECTING INHOMOGENEOUS CONCENTRATION ZONES IN HEAT-RESISTANT NICKEL ALLOYS STRUCTURE, INCLUDING THOSE OBTAINED BY SELECTIVE LASER MELTING

A.N. RAEVSKIKH

All-Russian Scientific Research Institute of Aviation Materials (FSUE VIAM),
17 Radio St, 105005 Moscow, Russian Federation. E-mail: raevskih_anton@me.com

Received April 6, 2020
Revised September 25, 2020
Accepted October 1, 2020

Abstract—This work presents the experimental data obtained using an integrated approach in the study of the chemical, crystallographic and morphological homogeneity of the structure of a heat-resistant material on a nickel base with carbide-intermetallic hardening and an increased content of the γ'-phase, synthesized on single-crystal substrates of various compositions with CHO <001> in Z-direction. Using the proposed method for studying the capabilities and certification of different-level structural structures of samples in the initial state and after thermal study of the impact. The analysis was carried out using the system for EBSD analysis integrated into the scanning electron microscope and the software package for the analysis of electron microscopic images.

Keywords: selective laser melting, SEM, concentration inhomogeneities, γ'-phase, image analysis, microtexture, EBSD analysis, single-crystal samples, crystallographic orientation, structural transformations

ACKNOWLEDGEMENTS

The work was carried out within the framework of the implementation of the complex scientific direction 10.3. “Atomization technologies for the production of finely dispersed high-quality alloy powders on various bases for additive technologies and solder powders for brazing” (“Strategic directions for the development of materials and technologies for their processing for the period up to 2030”) [36].

DOI: 10.22349/1994-6716-2020-104-4-32-47

REFERENCES

22. Tkal, V.A., Sharaeva, A.V., Zhukovskaya, I.A., Tsifrovaaya obrabotka poliarizatsionno-opticheskikh izobrazheniy defektov struktury monokristallov [Digital processing of polarization-optical images of defects in the structure of single crystals], Sovremennyye metody analiza difraksionnykh dannykh i aktualnye problemy rentgenovskoy optiki: collection of materials and program of the Sixth In-
INVESTIGATION OF THE FATIGUE CRACK GROWTH RATE IN HEAT-RESISTANT NICKEL ALLOYS

I.A. KHODINEV, S.A. MONIN, P.V. RYZHKO
All-Russian Scientific Research Institute of Aviation Materials
(FSUE VIAM), 17 Radio St, 105005 Moscow, Russian Federation. E-mail: admin@viam.ru
Received September 28, 2020
Revised November 2, 2020
Accepted November 13, 2020

Abstract—The results of tests on the FCGR (fatigue crack growth rate) of compact specimens of eccentric tension using a crack opening (COD) sensor under conditions of an asymmetric loading cycle \(R = 0.1 \) at room and elevated temperatures are presented. The relationship between the conditions of force loading of preliminary growth of the initial fatigue crack is considered. The values of the effective stress intensity factor \(K_{\text{eff}} \) were obtained, which is an important estimate for interpreting the observed character of crack growth. A comparison of the properties of the cyclic crack resistance of the VZh175-ID alloy with the properties of foreign analogues Rene 88DT, Inconel 625 SLM and domestic ones – EP741NP, EK151-ID is presented. The influence of the test temperature on the growth rate is shown. The hypothesis about the linear dependence of the parameters of the Paris equation is tested.

Keywords: mechanical properties, fatigue characteristics, heat-resistant wrought nickel alloys, kinetic diagram of fatigue fracture, effective stress intensity factor, crack closure, Paris equation

DOI: 10.22349/1994-6716-2020-104-4-48-63

ACKNOWLEDGEMENTS

The work was carried out within the framework of the implementation of a complex scientific problem 2.2. “Qualification and research of materials” (“Strategic directions for the development of materials and technologies for their processing for the period up to 2030”).

REFERENCES

PROSPECTS FOR THE CREATION OF HIGH-TEMPERATURE HEAT-RESISTANT ALLOYS BASED ON REFRACTORY MATRICES AND NATURAL COMPOSITES

E.N. KABLOV, Dr Sc. (Eng), Yu.A. BONDARENKO, Dr Sc. (Eng), M.Yu. KOLODYAZHNY, V.A. SUROVA, A.R. NARSKY

All-Russian Scientific Research Institute of Aviation Materials (FSUE VIAM), 17 Radio St, 105005 Moscow, Russian Federation. E-mail: admin@viam.ru

Received August 27, 2020
Revised September 24, 2020
Accepted September 25, 2020
Abstract—The paper presents the scientific, technical and technological aspects in the field of creating new high-temperature materials for parts of the hot section of gas turbine engines (GTE) with operating temperatures exceeding those existing in GTE. More refractory metallic materials for the creation of new high-heat-resistant alloys used for the manufacture of rotor and nozzle blades and other parts of promising gas turbine engines based on NiAl-Ni3Al, Co–Cr–Re, Pt–Al, Nb–Si, Mo–Si–B systems have been investigated. It is shown that, depending on the composition of the selected matrix, the working temperature of heat-resistant alloys increases to 1300–1500°C, which is significantly higher than the existing nickel heat-resistant alloys.

Keywords: high-temperature alloys, refractory matrices, hardening phases, eutectic composite, microstructure, short-term and long-term strength, gas turbine engines

DOI: 10.22349/1994-6716-2020-104-4-64-78

REFERENCES

43. Patent CN 102703971: A kind of device of the reduction InP crystal twin based on VGF method, publ. 03.10.2012.

47. Patent US 7610945: Rare earth-based core constructions for casting refractory metal composites, and related processes, publ. 03.11.2009.

51. Min, P.G., Vadeev, V.E., Kramer, V.V., Tekhnologiya vyplavki vysokotemperaturnogo kompozitsionnogo materiala na osnove sistemy Nb-Si v vakuumnoy induktsionnoy pechi [Smelting technology of high-temperature composite material based on the Nb-Si system in a vacuum induction furnace], *Metallurg*, 2019, No 8, pp. 91–96.

UDC 669.295: 536.212.2: 621.039.53

INFLUENCE OF THE COMPOSITION OF α-TITANIUM ALLOYS ON THERMAL CONDUCTIVITY

I.A. SCHASTLIVAYA, V.P. LEONOV, Dr Sc. (Eng), I.V. TRETYAKOV, A.Yu. ASKINAZI, Cand. Sc. (Eng)

NRC “Kurchatov Institute” – CRISM “Prometey”, 49 Shpalernaya St, 191015 St Petersburg, Russian Federation. E-mail: mail@crism.ru

Received September 11, 2020
Revised October 29, 2020

© 2020

NRC “Kurchatov Institute” – CRISM “Prometey”
http://www.crism-prometey.ru

Scientific and Technical Journal
“Voprosy Materialovedeniya”
Accepted December 7, 2020

Abstract—Among titanium alloys, modern α- and pseudo-α-alloys occupy a special place due to the unique combination of their mechanical properties, corrosion resistance, low density and high specific strength, which determines their effectiveness in various industries. Analysis of structural materials used for heat exchange equipment of nuclear power plants showed that the increase in the efficiency and compactness of tube systems made of α-titanium alloys is constrained by their thermal conductivity characteristic, which does not exceed 8–9 W/(m·K) at a temperature of 20°C. An exception is the VT1-0 grade alloy, the scope of which is limited to a maximum operating temperature of no more than 250°C. The paper considers the results of studies of a new titanium alloy of the Ti–Zr–Al–O composition with increased thermal conductivity for pipe systems of power equipment.

Keywords: titanium, thermal conductivity, titanium α- and pseudo-α-alloys

DOI: 10.22349/1994-6716-2020-104-4-79-86

REFERENCES

10. Boky, G.B., Vvedenie v kristallokhimiyu [Introduction to crystal chemistry], Moscow: Moscow University, 1954.

CASTING GLASS COATED MICROWIRES OF ALLOYS BASED ON SILVER AND NICKEL

O.V. VASILIEVA¹, Cand. Sc. (Eng), E.L. GYULIKHANDANOV², Dr Sc. (Eng), B.V. FARMAKOVSKY¹, Cand Sc. (Eng), M.V. KHROMENKOV¹

¹NRC “Kurchatov Institute” – CRISM “Prometey”, 49 Shpalernaya St, 191015 St Petersburg, Russian Federation. E-mail: mail@crism.ru

²St Petersburg Polytechnic University, 29 Polytechnicheskaya St, 195251 St Petersburg, Russian Federation

Received March 2, 2020
Revised November 3, 2020
Accepted November 11, 2020

Abstract—This work presents the results of studying the features of the casting process of glass-coated microwires of alloys based on silver, which has a near-zero TCR, and nickel, which has a high thermo emf.

Keywords: glass coated cast microwire, temperature coefficient of resistance (TCR), thermo emf, linear resistance

DOI: 10.22349/1994-6716-2020-104-4-87-94

REFERENCES

STRUCTURE AND MICROHARDNESS OF BINDING FOR DIAMOND TOOLS BASED ON TUNGSTEN CARBIDE OBTAINED BY IMPREGNATION OF IRON–CARBON MELT

P.P. SHARIN¹, Cand. Sc. (Phys-Math), M.P. AKIMOVA¹, S.P. YAKOVLEVA¹, Dr Sc. (Phys-Math), V.I. POPOV², Cand. Sc (Phys-Math)

¹ V.P. Larionov Institute of the Physical-Technical Problems of the North of the Siberian Branch of the RAS, Federal Research Centre “The Yakut Scientific Centre of the SB of the RAS”, 677027 Yakutsk, Russian Federation. E-mail: iftps01@mail.ru
² M.K. Ammosov North-Eastern Federal University, 58 Belinskogo St, 677000 Yakutsk, Russian Federation. E-mail: rector@s-vfu.ru

Received August 11, 2020
Revised September 23, 2020
Accepted October 8, 2020

Abstract—In this work, an experimental modeling of the technology for producing a matrix by sintering a diamond-containing briquette with a filler of tungsten monocarbide powder impregnated with a Fe–C eutectic melt in a vacuum is carried out. The microstructure, elemental and phase compositions of the products formed in the process of sintering a diamond-containing matrix with impregnation with a Fe–C eutectic melt in vacuum have been studied by scanning electron microscopy, X-ray spectral and X-ray phase analyzes, and Raman spectroscopy. It was found that the matrix consists of 61.0% tungsten carbide phases, 17.0% of iron carbide, 16.5% of α-Fe, and 5.5% of graphite. The eutectic Fe–C alloy, which serves as a matrix binder, consists of a ferrite-pearlite metal base with graphite inclusions. It is shown that at the diamond – matrix interface, graphite inclusions are formed not as a continuous layer, but as discontinuous areas along the perimeter of diamond grains. The microhardness of the WC-based matrix impregnated with the Fe–C melt is ~11 GPa, which is more than 3 times higher than the microhardness of the WC–Co–Cu hard alloy matrix obtained by sintering with copper impregnation.

The research results can be used in the development of technology for the manufacture of wear-resistant matrices of diamond tools of a wide class used in the processing of materials with a high level of hardness.

Keywords: diamond, matrix, iron-carbon alloys, eutectic melting, microstructure, graphitization, diamond retention

DOI: 10.22349/1994-6716-2020-104-4-95-108

REFERENCES

© 2020
NRC “Kurchatov Institute” – CRISM “Prometey”
http://www.crism-prometey.ru

Scientific and Technical Journal
“Voprosy Materialovedeniya”

6. Semenov, A.P., Pozdnjakov, V.V., Kraposhina, L.B., Trenie i kontaktnoe vzaimodeystvie grafita i almaza s metallami i splavami [Friction and contact interaction of graphite and diamond with metals and alloys], Moscow, Nauka, 1974.

7. Semenov, A.P., Pozdnjakov, V.V., Lapshina, V.A., Kontaktne evtekticheskoe plavlenie almaza i grafita s metallami triady zheleza [Contact eutectic melting of diamond and graphite with iron triad metals], *Doklady Akademii nauk SSSR*, 1968, V. 181 (6), pp. 1368–1371.

UDC 621.793.7

ALLOY BASED ON THE Al–Mg SYSTEM FOR DEVELOPING A TARGET FOR MAGNETRON THIN FILMS SPUTTERING

NRC “Kurchatov Institute” – CRISM “Prometey”, 49 Shpalernaya St, 191015 St Petersburg, Russian Federation. E-mail: mail@crism.ru

Received September 14, 2020
Revised September 30, 2020
Accepted October 20, 2020

Abstract—The article presents research results on the development of a precision alloy of the Al–Mg–Ce–La–Y system for obtaining thin films by magnetron sputtering. Thin films are used to create electronic components on their basis.

Keywords: lanthanides, target, magnetron sputtering, plasma panel, cathode

DOI: 10.22349/1994-6716-2020-104-4-109-112

REFERENCES

Abstract—This paper presents the results on the development of an alloy in the tellurium – copper – cerium system used for the manufacture of functional coatings using the technologies of supersonic cold gas-dynamic spraying. Coatings from the specified alloy are used for the manufacture of photocathodes of photoelectronic devices operating in the UV spectral region.

Keywords: mechanosynthesis, disintegrator treatment, functional coating, photocathode, photoelectronic device

DOI: 10.22349/1994-6716-2020-104-4-113-116

ACKNOWLEDGEMENTS

The work was carried out within the framework of the contract with the Lappeenranta Institute of Technology “Russia – South-East Finland 2014–2020”.

REFERENCES

DEVELOPING GLASS COMPOSITION FOR GLASS COATED In AND Sn CAST MICROWIRES

O.V. VASILIEVA, Cand Sc. (Eng), B.V. FARMAKOVSKY, Cand Sc. (Eng), M.V. KHROMENKOV

NRC “Kurchatov Institute” – CRISM “Prometey”, 49 Shpalernaya St, 191015 St Petersburg, Russian Federation. E-mail: mail@crism.ru

Received September 9, 2020
Revised November 5, 2020
Accepted November 6, 2020

Abstract—The paper presents the results of research and development of glasses for insulation of cast microwires of the PbO – SiO₂ – Na₂O – InO₂ – SnO₂ system. The optimal composition has been determined, which makes it possible to establish a stable process of casting microwires from indium and tin with a length of more than 1000 meters. It is shown that from such microwires it is possible that small base fusible fuses with a high melting current density could be manufactured.

Keywords: glass-coated cast microwire, small base fuses, melting current density

DOI: 10.22349/1994-6716-2020-104-4-117-120

ACKNOWLEDGEMENTS

V. Smirnov†, the head of the laboratory of the Central Scientific Research Institute of Materials, took an active part in the work.

REFERENCES

STUDY OF PHASE TRANSFORMATIONS IN THE SYNTHESIS OF CATALYTIC COATINGS ON METAL CARRIER

N.V. YAKOVLEVA, B.V. FARMAKOVSKY, Cand. Sc. (Eng), A.M. MAKAROV

NRC “Kurchatov Institute” – CRISM “Prometey”, 49 Shpalernaya St, 191015 St Petersburg, Russian Federation. E-mail: mail@crism.ru

Received November 3, 2020
Revised November 16, 2020
Accepted November 23, 2020

Abstract—The article presents the results of a study of the catalytically active system Ni–Al–Al(OH)₃–Ca(OH)₂–Mg(OH)₂ for efficient synthesis gas production. A technology for obtaining volumetric porous functional coatings has been developed using the method of supersonic cold gas-dynamic spraying. The advantages of this method and its possibilities from the point of view of producing synthesis gas with high activation energy are shown.

Keywords: catalyst, synthesis gas, reforming, activation energy, hydroxides, phase transformations, diffraction spectrum, specific surface area

DOI: 10.22349/1994-6716-2020-104-4-121-131

REFERENCES

Abstract—This work studies the effect of the relative content of Al$_2$O$_3$ nanofibers on the compaction, phase composition, and physicomechanical properties of composites based on ZrO$_2$ obtained by free vacuum sintering. It was found that in the process of manufacturing composites, nanofibers are sintered into Al$_2$O$_3$ grains of complex, elongated shape, which form a solid, frame-reinforcing structure. The relative density of composites with 5 wt. % and 10 wt. % of nanofibers, decreases up to 95%. It is shown that in all sintered samples the tetragonal modification of ZrO$_2$ acts as the main phase, and the different content of nanofibers affects the amount of cubic and monoclinic modifications of ZrO$_2$. It was found that addition of 5 wt. % and 10 wt. % of Al$_2$O$_3$ nanofibers increases the microhardness of the composite by 11% and crack resistance by 46%.

Keywords: composite, ceramics, zirconium dioxide, Al$_2$O$_3$ nanofibers, microstructure, phase composition, mechanical properties

DOI: 10.22349/1994-6716-2020-104-4-132-143

REFERENCES

9. Leonov, A.A., Paygin, V.D., Tolkachov, O.S., Alishin, T.R. Strukturo-fazovye prevrashcheniya nanovolokon oksida alyuminiya [Structural phase transformations of nanofibers of aluminum oxide], *Per-

17. Porozova, S.E., Kulmeteva, V.B., Ziganshin, I.R., Torsunov, M.F., Srvavntel'naya kharakteristika rezultatov opredeleniya soderzhania monoklinnoy fazy v diokside tsirkoninya [Comparative characteristics of the results of determining the content of the monoclinic phase in zirconium dioxide], Voprosy Materialovedeniya, 2010, No 1 (61), pp. 46–52.

UDC 678.067.2

INFLUENCE OF CLIMATIC FACTORS ON THE PROPERTIES OF BALLISTICALLY RESISTANT ORGANOPLASTICS

G.F. ZHELEZINA, Cand. Sc. (Eng), N.A. SOLOVIEVA, P.M. SHULDESHOVA, A.Ch. KAN

All-Russian Scientific Research Institute of Aviation Materials (FSUE VIAM), 17 Radio St, 105005 Moscow, Russian Federation. E-mail: admin@viam.ru

Received August 27, 2020
Revised September 24, 2020
Accepted September 25, 2020

Abstract—Ballistic-resistant organoplastics made from layers of aramid fabric, adhesively bonded by a binder film, exhibit an increased tendency to absorb moisture, water and technical fluids in comparison with organoplastics monolithic structures. The absorption of liquids is anisotropic and manifests itself most intensively through the butt ends of the samples. The use of protective paintwork ensures stability of the characteristics of ballistic-resistant materials when exposed to environmental factors (environment, water, fuel, oil, natural climatic conditions).

Keywords: organoplastics, moisture absorption, climatic impact, environmental factor

DOI: 10.22349/1994-6716-2020-104-4-144-157

REFERENCES

2. Kablov, E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i nationalnoy bezopasnosti Rossii [New generation materials are the basis for innovation, technological leadership and national security in Russia], Intellekt i tekhnologii, 2016, No 2 (14), pp. 16–21.

fibers of the third generation Rusar NT for reinforcing organotexolites for aviation], *Plasticheskie Massy*, 2019, No 3–4, pp. 43–46.

20. Kablov, E.N., Startsev, V.O., Inozemtsev, A.A., Viagonasxryshchenie konstruktivno-podobnykh elementov iz polimernykh kompozitsionnykh materialov v otkrytykh klimaticheskikh usloviyakh s nalozheniem termotsiklov [Moisture saturation of structurally similar elements made of polymer composite...

29. Kablov, E.N., Startsev, O.V., Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticeskih usloviiakh (obzor) [Fundamental and applied research on corrosion and aging of materials in climatic conditions (review)], Aviatsionnye materialy i tekhnologii, 2015, No 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.

UDC 678.067: 621.891

INFLUENCE OF THE INITIAL ROUGHNESS OF THE ANTI-FRICTION CARBONS SURFACE ON TRIBOTECHNICAL CHARACTERISTICS AND RUNNING-IN COATING EFFICIENCY

I.V. LISHEVICH, Cand. Sc. (Eng), A.V. ANISIMOV, Dr Sc. (Eng), A.S. SAVELOV, Cand Sc. (Eng), A.S. SARGSYAN, Cand Sc. (Eng), M.Yu. SOBOLEV

NRC “Kurchatov Institute” – CRISM “Prometey”, 49 Shpalernaya St, 191015 St Petersburg, Russian Federation. E-mail: mail@crism.ru

Received September 9, 2020
Revised September 16, 2020
Accepted October 1, 2020

© 2020
NRC “Kurchatov Institute” – CRISM “Prometey”
http://www.crism-prometey.ru

Scientific and Technical Journal
“Voprosy Materialovedeniya”
Abstract—The roughness of the friction surface of antifriction carbons used in sliding friction units lubricated with water affects the tribotechnical characteristics during the running-in process. This article experimentally substantiates the range of optimal surface roughness formed during mechanical cutting of carbon plastics in terms of tribotechnical efficiency. The results of a series of tribotechnical tests using various methods under various conditions (contact pressure, sliding speed, counterbody materials) are presented. The relationship between the initial roughness and the effectiveness of a running-in coating based on FORUM® poly-tetrafluoroethylene powder is established.

Keywords: antifriction carbon plastics, friction and wear, sliding, running-in, roughness

DOI: 10.22349/1994-6716-2020-104-4-158-169

REFERENCES

6. Ivanov, O.A., Povyshenie effektivnosti lezvinnoy obrabotki kompozitsionnykh ugleplastikov na osnove ucheta ikh fiziko-mekhanicheskikh karakteristik [Improving the efficiency of blade processing of composite carbon plastics based on taking into account their physical and mechanical characteristics]: Abstract of dissertation for the degree of candidate of engineering sciences, 2006.

UDC 669.225: 620.191.5: 620.179.11

RESEARCH AND ANALYSIS OF METHODS FOR PREVENTING SILVER ALLOYS FROM TARNISHING

S.A. TYURINA¹, Cand Sc. (Eng), S.L. CHAVUSHYAN², A.V. MAKAROVA¹, R.E. KHVOSTOV¹,
G.A. YUDIN¹

¹MIREA – Russian Technological University, 78 Vernadsky Ave, 119454 Moscow, Russian Federation
²Moscow State Stroganov Academy of Design and Applied Arts, 9 Volokolamskoe Highway, 125080 Moscow, Russian Federation

Received September 2, 2020
Revised November 9, 2020
Accepted November 11, 2020

Abstract—This paper examines factors causing the darkening of items made of silver alloys in showcases and storehouses of museums, the authors analyze methods to prevent this undesirable process. The results of studies of different methods for preventing tarnishing of silver alloys are also presented.

Keywords: silver, tarnishing of silver, corrosion of silver, cultural heritage

DOI: 10.22349/1994-6716-2020-104-4-170-181

REFERENCES

FEM ASSESSMENT OF THE LOCAL SIDE COMPRESSION TECHNIQUE EFFICIENCY AS APPLICABLE FOR NOTCHED PRISMATIC SPECIMENS

K.E. SADKIN, Cand. Sc (Eng), V.Yu. FILIN, Dr Sc. (Eng), A.V. MIZETSKY, E.D. NAZAROVA
NRC “Kurchatov Institute” – CRISM “Prometey”, 49 Shpalernaya St, 191015 St Petersburg, Russian Federation. E-mail: mail@crism.ru

Received October 20, 2020
Revised November 23, 2020
Accepted November 27, 2020

Abstract—A crack front straightness is one of the test result validity criteria for fatigue precracked static fracture toughness specimens. Actually, the ideally straight crack front cannot be reached due to the presence of residual stress. This is particularly actual for specimens cut out of welded joints containing the residual welding stress (RWS). One of the techniques allowing to lower the RWS effect is a local side compression of specimens. Its efficiency has been proved in physical testing however no quantitative assessments are known in the literature. This work comprises FEM simulation of welding, sampling and side compression processes. The effect of local compression on base metal containing no residual stress is also investigated.

It has been found that in the course of local side compression the initial residual stress field caused by welding and specimen making is replaced by another field showing stress gradients more favourable for getting the fatigue crack shape meeting the validity criteria of test results as per approved test methods. The calculation results show that the complete removal of residual stress as in base metal as in welded specimens is not feasible in the range of actual practicable degrees of compression.

Keywords: fracture mechanics, welded fracture toughness specimens, crack front straightness, local side compression

DOI: 10.22349/1994-6716-2020-104-4-182-191

REFERENCES

UDC 621.039.531: 539.4:620.17

STUDY OF NOZZLES’ METAL OF VVER-440 PRESSURE VESSEL AFTER 45 YEARS OF EXPLOITATION

D.Yu. ERAK, Dr Sc. (Eng), K.I. MEDVEDEV, A.A. CHERNOBAEVA, Dr Sc. (Eng),
D.A. ZHURKO, Cand Sc. (Eng), A.D. ERAK, Cand Sc. (Eng), S.A. BUBYAKIN, Cand Sc. (Eng),
A.P. BANDURA

NRC “Kurchatov Institute”, 1 Akademika Kurchatova Sq, 123182 Moscow, Russian Federation

Received August 21, 2020
Revised September 4, 2020
Accepted September 7, 2020

Abstract—The paper presents the research results on determining the mechanical characteristics of the metal samples cut out from the nozzles and the cylindrical shell at the nozzles zone of the VVER-440 reactor vessel after 45 years of operation.

Keywords: shell of the nozzle zone, critical brittleness temperature, yield strength, ultimate strength, RPV material.

DOI: 10.22349/1994-6716-2020-104-4-192-199

ACKNOWLEDGEMENTS

The work was carried out with the financial support of Rosenergoatom JSC.

REFERENCES

